SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 MODEL QUESTION BANK (DESCRIPTIVE) Subject with Code: NUMERICAL METHODS, PROBABILITY & STATISTICS (20HS0833) Course & Branch: B.Tech-ME Year & Sem: II-I Regulation: R20 ### UNIT –I ## NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS & INTERPOLATION | | | 1 | | |----|---|-----------|--------| | 1 | a) Define Algebraic equation and Transcendental equation. | [L1][CO2] | [2M] | | | b) Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method. | [L3][CO2] | [10M] | | 2 | a) What is the algorithm for the bisection method. | [L1][CO2] | [4M] | | 2 | b) Find real root of the equation $3x = e^x$ by Bisection method. | [L3][CO1] | [8M] | | 3 | a) Describe the formula for square root of a number by Newton – Raphson formula. | [L2][CO2] | [2M] | | | b) Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using Bisection method. | [L3][CO2] | [10M] | | 4 | a) State Newton – Raphson formula for solution of polynomial and transcendental equations. | [L1][CO2] | [2M] | | _ | b) Estimate a real root of the equation $xe^x - \cos x = 0$ by using Newton – Raphson method. | [L4][CO1] | [10M] | | 5 | Using Newton-Raphson method (i) Find square root of 28 (ii) Find cube root of 15. | [L3][CO2] | [12M] | | 6 | a) Using Newton-Raphson method, find reciprocal of 12. | [L3][CO2] | [6M] | | U | b) Find a real root of the equation $xtanx+1=0$ using Newton – Raphson method. | [L3][CO1] | [6M] | | 7 | a) Write formula for Regula-falsi method. | [L2][CO1] | [2M] | | ' | b) Predict a real root of the equation $x e^{x} = 2$ by using Regula-falsi method. | [L2][CO1] | [10M] | | 8 | Find the root of the equation $x \log_{10}(x)=1.2$ using False position method. | [L3][CO1] | [12M] | | | a) Write the formula for Newton's forward interpolation. | [L1][CO1] | [2M] | | 9 | b) From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$. | [L5][CO1] | [10M] | | | x 0.10 0.15 0.20 0.25 0.30 y 0.1003 0.1511 0.2027 0.2553 0.3093 | | | | | a) Apply Newton's forward interpolation formula and the given table of values | | | | | x 1.1 1.3 1.5 1.7 1.9 | [L3][CO1] | [6M] | | 10 | $\begin{array}{ c c c c c c c c c }\hline f(x) & 0.21 & 0.69 & 1.25 & 1.89 & 2.61 \\ \hline Obtain the value of f(x) when x=1.4.$ | [L3][CO1] | [0141] | | | b) Use Newton's backward interpolation formula to find f(32) given f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794. | [L3][CO1] | [6M] | # UNIT –II NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS & NUMERICAL INTEGRATION | 1 | a) State Taylor's series formula for first order differential equation. | [L1][CO3] | [2M] | |----|---|-----------|-------| | | b) Tabulate y(0.1) and y(0.2) using Taylor's series method given that $y^1 = y^2 + x$ and y(0) = 1 | [L1][CO3] | [10M] | | 2 | Evaluate by Taylor's series method, find an approximate value of y at x=0.1 and 0.2 for the D.E $y^{11} + xy = 0$; $y(0) = 1$, $y^{1}(0) = 1/2$. | [L5][CO3] | [12M] | | 3 | a) Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method. | [L3][CO3] | [6M] | | 3 | b) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2) | [L3][CO3] | [6M] | | 4 | a) State Euler's formula for differential equation. | [L1][CO3] | [2M] | | | b)Using Euler's method, find an approximate value of y corresponding to $x = 0.2$ given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$ taking step size $h = 0.1$ | [L3][CO3] | [10M] | | 5 | Using modified Euler's method find $y(0.2)$ and $y(0.4)$, given $y^1 = y + e^x$, $y(0) = 0$ | [L3][CO3] | [12M] | | | a) Solve by Euler's method $y' = y^2 + x$, $y(0)=1$ and find $y(0.1)$ and $y(0.2)$ | [L3][CO3] | [6M] | | 6 | b) Using Runge – Kutta method of fourth order, compute y(0.2) from $y^1 = xy \ y(0)=1$,taking h=0.2 | [L3][CO3] | [6M] | | 7 | Using R-K method of 4 th order, solve $\frac{dy}{dx} = x^2 - y$, y(0)=1.
Find y(0.1) and y(0.2). | [L3][CO3] | [12M] | | 8 | Using R-K method of 4 th order find y(0.1) and y(0.2) given that $\frac{dy}{dx} = x + y$, $y(0) = 1$. | [L3][CO3] | [12M] | | 9 | Evaluate $\int_0^1 \frac{1}{1+x} dx$ by (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value. | [L5][CO3] | [12M] | | 10 | a) Evaluate $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions. | [L5][CO3] | [6M] | | 10 | b) Evaluate $\int_0^{\pi/2} \sin x dx$ using Trapezoidal rule, Simpson's $\frac{1}{3}$ rule and compare with exact value. | [L5][CO3] | [6M] | ## UNIT –III BASIC STATISTICS & BASIC PROBABILITY | | a) Define Measures | of Central te | endency. | | | | | | | [L1][CO4] | [2M] | |---|--|--------------------------------------|---------------|-------------|----------|------------------------|-----------|------------|------------|------------------------|--------------| | 1 | b) i) The weights o 58,62,56,63,55 ii) Find the med | 5,61 kgs. Fii | nd arithm | netic m | ean of | weight | of | | itors. | [L3][CO4]
[L1][CO4] | [3M]
[3M] | | 1 | c) Find arithmetic Marks frequence | 10-20 | 20-30
8 | 30-40
25 | 1 |)-50
2 | 50- | -60 | | [L1][CO4] | [4M] | | | a) Describe arithme | • | ode and | median | 1. | | <u>I</u> | | | [L2][CO4] | [3M] | | 2 | b) Find the median Class intervention frequency | | | | 0-70 | 70-80 |) | 80-90
2 | | [L1][CO4] | [5M] | | | c) Find arithmetic n | nean to the f | Collowing 3 | data 4 12 | 5 6 | | | | | [L1][CO4] | [4M] | | | a) Find mode to the | l . | lata
15 15 | | 20-25 | 25-3 | | 30-35 | 35-40 | [L1][CO4] | [6M] | | 3 | b) Find the median $\begin{bmatrix} x & 5 \\ f & 2 \end{bmatrix}$ | 8 | 11 | 14
20 | 17
10 | 20 | | 23
3 | | [L1][CO4] | [6M] | | | a) Obtain mode of t | he values 10 | 0,12,15,2 | 0,12,10 | 6,18,15 | 5,12,10, | 16,2 | 20,12,24 | 1. | [L3][CO4] | [6M] | | 4 | b) The first four mo 2, 20, 40 and 50. | | | | | | | | | [L5][CO4] | [6M] | | 5 | X 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 F 2 6 11 20 40 75 45 25 18 8 | | | | | | [L6][CO4] | [12M] | | | | | 6 | Compute the first for Sheppard's correct Class intervals 0 frequency 2 | ection, β_1 and β_2 10-2 | and β_2 | | 0-40 | ng data
40-50
20 | |)-60 | 60-70
3 | [L6][CO4] | [12M] | | | a) What is the probability of an event? | | | | | | | [L1][CO4] | [2M] | | | | 7 | b) Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be the event that at least one number is 6. Find (i) P(A∩B) (ii) P(A∪B) (iii) P(A^c∪B^c) (iv) P(A^c∩B^c) (v) P(A∩B^c) | | | | | | | [L3][CO4] | [10M] | | | | | a) State and prove Addition theorem of probability. | | | | | | [L1][CO4] | [6M] | | | | | 8 | b) The probability that students A, B, C, solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively If all of them try to solve the problem, what is the probability that the problem is solved. | | | | | | [L6][CO4] | [6M] | | | | | 9 | a) State Baye's theo | orem. | | | | | | | | [L1][CO4] | [2M] | | | b) In a certain college 25% of boys and 10% of girls are studying mathematics. The girls Constitute 60% of the student body.(a) What is the probability that mathematics is being studied?(b) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (c) a boy? | [L3][CO4] | [10M] | |----|---|-----------|-------| | 10 | a) In a certain town 40% have brown hair, 25% have brown eyes and 15% have both brown hair and brown eyes. A person is selected at random from the town.i) If he has brown hair, what is the probability that he has brown eyes also?ii) If he has brown eyes, determine the probability, that he does not have brown hair? | [L1][CO4] | [6M] | | | b) Determine (i) $P(B/A)$ (ii) $P(A/B^C)$ if A and B are events with $P(A) = \frac{1}{3} P(B) = \frac{1}{4}$, $P(AUB) = \frac{1}{2}$. | [L5][CO4] | [6M] | ### UNIT –IV RANDOM VARIABLES | 1 | a) Define Random variable. | [L1][CO5] | [2M] | |---|--|-----------|-------| | | b) Two dice are thrown. Let X assign to each point (a, b) in S the maximum of its numbers i.e, X (a, b) = max (a, b). Find the probability distribution. X is a random variable with X(s)={1,2,3,4,5,6}. Also find the mean and variance of the distribution. | [L3][CO5] | [10M] | | | a) Describe Discrete random variable. | [L2][CO5] | [2M] | | 2 | b) A random variable x has the following probability distribution function $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | [L3][CO5] | [10M] | | | A random variable X has the following probability function. | [] [][[] | [10] | | | X 0 1 2 3 4 5 6 7 | [L5][CO5] | [12M] | | 3 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | Determine (i) K (ii) Mean iii) variance. (iv) if P(X ≤ K)>1/2, find the Minimum value of K | | | | 4 | a) Write the Properties for Discrete and Continuous random variables. | [L2][CO5] | [4M] | | | b) A random variable x has the following probability distribution function | [L3][CO5] | [8M] | | 5 | a) Define continuous random variable. | [L1][CO5] | [2M] | | | b) A random variable x has the following probability distribution x 1 2 3 4 5 6 P(x) k 3k 5k 7k 9k 11k Find i) k ii) Mean iii) Variance. | [L3][CO5] | [10M] | | | a) Find the mean and variance of the uniform probability distribution given by $f(x) = \frac{1}{n}$ for $x = 1, 2,, n$. | [L1][CO5] | [6M] | | 6 | b) If a random variable has a Probability density $f(x)$ as $f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$
Find the Probabilities that it will take on a value (i) Between 1 & 3 (ii) Greater than 0.5 | [L6][CO5] | [6M] | | 7 | Probability density function of a random variable X is $f(x) = \begin{cases} \frac{1}{2} \sin x, & \text{for } 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$ Find the mean, mode and median of the distribution and also find the probability between 0 and $\frac{\pi}{2}$. | [L6][CO5] | [12M] | | 8 | a) Probability density function $f(x) = \begin{cases} k(3x^2 - 1), in - 1 \le x \le 2 \\ 0, elsewhere \end{cases}$. (i) Find the value of k. (ii) Find the probability $(-1 \le x \le 0)$ | [L1][CO5] | [6M] | |--| | | b) The probability density function of a random variable x is $f(x) = \begin{cases} kx(x-1); 1 \le x \le 4 \\ 0; elsewhere \end{cases}$ And $P(1 \le x \le 3) = \frac{28}{3}$ Find the value of k. | [L6][CO5] | [6M] | |----|---|-----------|-------| | 9 | For the continuous probability function $f(x) = \begin{cases} kx^2e^{-x} & when \ x \ge 0 \\ 0 & elsewhere \end{cases}$
Find i) k ii) Mean iii) Variance. | [L1][CO5] | [12M] | | 10 | a) Define Probability density function. | [L1][CO5] | [2M] | | | b) A continuous random variable x has the distribution function $F(x) = \begin{cases} 0 & \text{if } x \le 1 \\ k(x-1)^4 & \text{if } 1 < x \le 3 \\ 0 & \text{if } x > 3 \end{cases}$ Find the value of k and the probability density function of x. | [L6][CO5] | [10M] | Course Code: 20HS0833 # UNIT –V PROBABILITY DISTRIBUTIONS AND CORRELATION | | a) Define Probability distribution function. | [L1][CO5] | [2M] | |----|---|-------------|----------| | | b) Derive the mean of Binomial distribution. | [L2][CO5] | [4M] | | 1 | c) 20% of items produced from a factory are defective. Find the probability that in a | [E2][CO3] | [41/1] | | | sample of 5 chosen at random (i) one is defective (ii) $p(1 < x < 4)$ | [L3][CO5] | [6M] | | 2 | a) Derive the Variance of Binomial distribution. | [L2][CO5] | [4M] | | | b) Fit a Binomial distribution to the following frequency distribution: | | | | | x 0 1 2 3 4 5 | [L5][CO5] | [8M] | | | f 2 14 20 34 22 8 | | | | | Out of 800 families with 5 children each, how many would you expect to have | | | | 3 | (i) 3 boys (ii) 5 girls (iii) either 2 or 3boys iv) At least one boy | [L2][CO5] | [12M] | | | a) If 2% of light bulbs are defective. Find the probability that | [] 2][[0.5] | I CN III | | | (i) At least one is defective (ii) $p(1 < x < 8)$ in a sample of 100. | [L3][CO5] | [6M] | | 4 | b) If for a Poisson variate $2P(X=0)=P(X=2)$ Find the probability that | II 211CO51 | [6M] | | | i) $P(X \le 3)$ ii) $P(2 < X \le 5)$ iii) $P(X \ge 3)$. | [L3][CO5] | [UIVI] | | | Fit a Poisson distribution to the following data | | | | 5 | x 0 1 2 3 4 5 Total | [L5][CO5] | [12M] | | | f 142 156 69 27 5 1 400 | | | | | In a sample of 1000 cases, the mean of certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal find | | | | 6 | (i) how many students score between 12 and 15. | [L3][CO5] | [12M] | | | (ii) How many students score above 18? (iii) How many students score below 18? | | | | | a) The probability of poisson variate taking the values 1&2 are equal. | [L3][CO5] | [6M] | | 7 | Find i) μ ii) $P(X \ge 1)$ iii) $P(1 < X < 4)$. | | [6M] | | , | b) If X is a normal variate with mean 30 and standard deviation 5. | [L3][CO5] | [6M] | | | Find the probability that i) $26 \le X \le 40$ ii) $X \ge 45$. | [L3][CO3] | | | | Calculate Correlation coefficient to the following data | | | | 8 | X 10 15 12 17 13 16 24 14 22 20 Y 30 42 45 46 33 34 40 35 39 38 | [L3][CO6] | [12M] | | | Y 30 42 45 46 33 34 40 35 39 38 | | | | | Ten competitors in a musical test were ranked by the three judges A,B and C in the | | [12M] | | | following order: Ranks by A | [L3][CO6] | | | | Ranks by A 1 6 5 10 3 2 4 9 7 8 Ranks by B 3 5 8 4 7 10 2 1 6 9 | | | | 9 | Ranks by C 6 4 9 8 1 2 3 10 5 7 | [20][000] | [12:11] | | | Using rank Correlation coefficient method, discuss which pair of judges has | | | | | the nearest approach to common likings in music. | | | | 10 | Find two regression equations from the following data: X 10 25 34 42 37 35 36 45 | [[2][CO6] | [12] | | 10 | X 10 23 34 42 37 33 36 43 Y 56 64 63 58 73 75 82 77 | [L3][CO6] | [12M] | | | 1 30 07 03 30 13 13 02 11 | | |